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Abstract

This paper aims to investigate the constraints on dependence measures based on the concept

of concordance when discrete random variables are involved. The main technical argument

consists in a continuous extension of integer-valued random variables by convolution with

unit support kernels.

r 2003 Elsevier Inc. All rights reserved.

AMS 2000 subject classifications: 62420

Keywords: Dependence; Concordance; Copula; Bivariate discrete

1. Introduction

In the context of dependence, many classical results crucially depend on the
continuity assumptions for the marginals. Most papers are devoted to this rather
well-explored situation, but much less is known about the discrete case where many
desirable properties of dependence measures no longer hold.
This paper investigates the behavior of dependence measures based on

concordance, such as Kendall’s t; applied to discrete bivariate data. It gives further
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insight into the properties and interpretation of such measures, see e.g. [1–3,9,11] and
the references therein for a detailed presentation.
Our main message is that these measures should not be related to their classical

bounds from the continuous case, since in general these bounds cannot be attained
with discrete margins. For example, the population Kendall’s t is restricted to a
narrower range than ½�1; 1� and this has to be taken into account when assessing the
strength of the dependence. We refer to [14] for alternative rank-based dependence
measures for categorical data: the proposed quantities take values in ½�1; 1� with 71
always reached under complete dependence.
The main theoretical vehicle of this paper is the continuous extension of discrete

random variables. Specifically, we make those variables continuous by adding a
perturbation taking values in ½0; 1�: This approach is very intuitive and allows for
easy derivation of interesting results. It has been suggested or used by some authors
in other contexts, see e.g. [10] for an early reference. The main theoretical interest of
this construction is that the copula modeling (see e.g. [5]) is attractive for continued
random variables, whereas it is extremely difficult for the original discrete ones
(because of the non-uniqueness of the copula outside the range of the marginal
distributions, see [4] for further explanations).
We use a partial ordering for the dependence in bivariate distributions based on a

measure of concordance. It can be regarded as a mathematical translation of the
intuitive concept of ‘‘being less dependent than’’ going beyond the simple
comparison of Kendall’s t’s.
The paper is set out as follows. Section 2 recalls the classical notion of

concordance and gives the basic definitions. Section 3 exposes the proposed
continuous extension of discrete random variables. It is established there that it
preserves the concordance order, which is intuitively desirable. Moreover, it leaves
Kendall’s t unchanged, a remarkable feature that is exploited to adapt to discrete
random variables known results for continuous ones. Section 4 examines the joint
distribution of the so-constructed continuous random variables. The underlying
copula is seen to be the classical bilinear interpolation, playing a central role in the
theory. An explicit expression for Kendall’s t is also derived for discrete random
variables as the sum of expectations of joint distributions. A simple example shows
that the range ½�1; 1� of t in the continuous case is further restricted for discrete
outcomes. Section 5 then explores the range of Kendall’s t for discrete marginals.
Upper and lower bounds are derived and exemplified for binomial, Poisson and
discrete uniform margins. We conclude the paper by a discussion.

2. Kendall’s s and discrete responses

2.1. Concordance

The most common measures of association for ordinal variables are based on the
classification of pairs of observations as concordant or discordant. A pair of
observations is concordant if the observation with the larger value of X has also the
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larger value for Y : The pair is discordant if the observation with the larger value of
X has the smaller value of Y : If ðX1;Y1Þ and ðX2;Y2Þ denote independent copies of
ðX ;Y Þ then the ðXi;YiÞ’s are said to be concordant if ðX1 � X2ÞðY1 � Y2Þ40 holds
true whereas they are said to be discordant when the reverse inequality is valid.
Henceforth,

PrðconcordanceÞ ¼ Pr½ðX1 � X2ÞðY1 � Y2Þ40�

and

PrðdiscordanceÞ ¼ Pr½ðX1 � X2ÞðY1 � Y2Þo0�:

Unlike for continuous variables, discrete variables may involve ties as PrðX1 ¼
X2Þ40 and PrðY1 ¼ Y2Þ40: Henceforth,

PrðtieÞ ¼ PrðX1 ¼ X2 or Y1 ¼ Y2Þ:

Whereas Kendall’s t is appropriate for measuring the strength of dependence
between continuous outcomes, it loses many of its good properties when applied to
discrete variables. In particular, it is no longer distribution-free and has a range
narrower than ½�1; 1�: Therefore, several dependence measures based on con-
cordance and discordance probabilities have been introduced for discrete random
variables. They differ in the treatment of ties. Concordance based dependence
measures are Goodman’s gamma, Kendall’s tb; Stuart’s tc and Somer’s D; see e.g.
[1–3,9,11] and the references therein. Here, we concentrate on Kendall’s t: Since
these dependence measures are based on concordance and discordance, the results
obtained for Kendall’s t can be adapted to the other dependence measures.
Before discussing Kendall’s t; we briefly recall the well-known copula construction

relating a bivariate distribution to its univariate marginals. We refer to [5] for a
detailed introduction to copulas.

2.2. Copula representation for bivariate distributions

Copulas can be used to define bivariate distributions with discrete margins. In
contrast to the continuous case, there is no unique way to express the joint
distribution of two discrete random variables as a function of their marginal
distributions.
More specifically, denote by X and Y two random variables, by F and G their

respective distribution functions, and by H the joint distribution of X and Y : Then

there exists a distribution C (named copula) on ½0; 1�2 such that

Hðs; tÞ ¼ PrðXps;YptÞ ¼ CðFðsÞ;GðtÞÞ ð1Þ

[8]. When the variables are continuous, C is unique. When the variables are discrete,
this uniqueness is only ensured on rangeðFÞ � rangeðGÞ:
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2.3. Kendall’s t

Assume that ðX1;Y1Þ and ðX2;Y2Þ are two independent copies of ðX ;Y Þ:
Kendall’s t is defined as

tðX ;YÞ ¼ PrðconcordanceÞ � PrðdiscordanceÞ ð2Þ

With continuous random variables,

tðX ;YÞ ¼ 2 PrðconcordanceÞ � 1

¼ 4 PrðX2pX1;Y2pY1Þ � 1

¼ 4

Z Z
½0;1�2

Cðu; vÞ dCðu; vÞ � 1 ð3Þ

[see e.g. 5, p. 129]. It is completely determined by the copula and is unrelated to the
marginal distributions.
When X and Y are valued in the non-negative integers,

PrðconcordanceÞ þ PrðdiscordanceÞ þ PrðtieÞ ¼ 1

so that we have

tðX ;YÞ ¼ 2 PrðconcordanceÞ � 1þ PrðtieÞ

¼ 4 PrðX2oX1;Y2oY1Þ � 1þ PrðX1 ¼ X2 or Y1 ¼ Y2Þ ð4Þ

As we show later, Kendall’s t cannot attain a very large absolute value because a
large proportion of the pairs are tied (especially when the number of possible values
for X and Y is small).

3. Continuous extension of a discrete variable

3.1. The principle

Assume that X is a discrete variable valued in a subset X of the set N of the non-
negative integers, and denote the corresponding non-zero probability masses by

fx ¼ PrðX ¼ xÞ; xAX:

We associate X with a continuous random variable X � such that

X � ¼ X þ ðU � 1Þ;

where U is a continuous random variable valued in (0,1) independent of X with a
strictly increasing cdf LUðuÞ on ð0; 1Þ sharing no parameters with the distribution of
X : We say that X is continued by U :
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Clearly, X �pX a.s.. Let ½s� be the integer part of sAR: For sAR;

F �ðsÞ ¼PrðX �psÞ ¼
X

xAX:xp½s�
fx þ LU ðs � ½s�Þ f½sþ1�

¼Fð½s�Þ þ LUðs � ½s�Þ f½sþ1� ð5Þ
and

f �ðsÞ ¼ lUðs � ½s�Þ f½sþ1�; ð6Þ
where f � is the density corresponding to F� and lU is the density corresponding to
LU :
Hence, for any xAN;

FðxÞ ¼ F�ðxÞ; fx ¼
Z x

x�1
f �ðsÞ ds: ð7Þ

The most natural choice for U is the uniform distribution on ð0; 1Þ: it satisfies all
the constraints on LU ; we have

LUðuÞ ¼ u; lUðuÞ ¼ 1

which simplifies Eqs. (5) and (6).

3.2. The continuous extension preserves the concordance order

Intuitively, two random variables X and Y are concordant when large values of X

tend to be associated with large values of Y : Several attempts have been made to
formulate this concept precisely; see e.g. [12] or [6]. The problem of comparing the
strength of dependence expressed by bivariate distributions is of prime importance
for modeling. A formalization of the intuitive idea of ‘‘being less dependent than’’
has been proposed by [15]; it is the concordance order !c (partially) ranking the
bivariate distributions with given univariate margins according to the strength of
their positive association.
This stochastic ordering is defined as follows: given two random vectors ðX1;Y1Þ

and ðX2;Y2Þ with identical marginals, ðX2;Y2Þ is said to be more concordant than
ðX1;Y1Þ; denoted as ðX1;Y1Þ!cðX2;Y2Þ; if

PrðX1ps;Y1ptÞpPrðX2ps;Y2ptÞ
holds for all s; tAR:
If ðX1;Y1Þ is the independent version of ðX2;Y2Þ then ðX1;Y1Þ!cðX2;Y2Þ means

that ðX2;Y2Þ is positively dependent by quadrants (PQD, in short). The
interpretation of this dependence notion stems from the inequality

FðsÞGðtÞpPrðX2ps;Y2ptÞ

valid for all s; tAR2: In words, it says that the probability for X2 and Y2 to be small
(i.e. smaller than some thresholds s and t) is at least as large as it would be were they
independent.
Assume now that ðX1;Y1Þ!cðX2;Y2Þ holds for some pairs ðX1;Y1Þ and ðX2;Y2Þ

of discrete r.v.’s. If X1 (Y1) and X2 (Y2) are continued by the same r.v. U (V ), with U
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and V independent, we have

Pr½X �
1ps;Y �

1pt� ¼ Pr½X1 þ ðU � 1Þps;Y1 þ ðV � 1Þpt�

¼
Z Z

u;vA½0;1�
Pr½X1ps � u þ 1;Y1pt � v þ 1� lUðuÞ lV ðvÞ du dv

p
Z Z

u;vA½0;1�
Pr½X2ps � u þ 1;Y2pt � v þ 1� lUðuÞ lV ðvÞ du dv

¼ Pr½X �
2ps;Y �

2pt�:

so that

ðX1;Y1Þ!cðX2;Y2Þ ) ðX �
1 ;Y �

1 Þ!cðX �
2 ;Y �

2 Þ: ð8Þ

In particular, if ðX ;Y Þ is PQD, then ðX �;Y �Þ so is.
Relation (8) ensures the coherence of the continuous extension in our context since

(i) it does not modify our perception of their strength of dependence;
(ii) it preserves PQD.

3.3. The continuous extension preserves Kendall’s t

Since Kendall’s t is based on concordance and discordance probabilities, let us
examine how the continuous extension affects these probabilities. Let ðX1;Y1Þ and
ðX2;Y2Þ be independent copies of ðX ;Y Þ: Assume that
* Xi and Yi are continued by Ui and Vi respectively,
* U1;U2;V1;V2 are independent,
* U1 and U2 (V1 and V2) have the same distribution,

Under these conditions, we may write

Pr
�
ðconcordanceÞ

¼ Pr½ðX �
1 � X �

2 ÞðY �
1 � Y �

2 Þ40�

¼ Pr½ðX1 þ U1 � X2 � U2ÞðY1 þ V1 � Y2 � V2Þ40�

¼ Pr½X1 ¼ X2;Y1 ¼ Y2� Pr½ðU1 � U2ÞðV1 � V2Þ40�

þ Pr½X1 ¼ X2;Y14Y2� Pr½U1 � U240�

þ Pr½X1 ¼ X2;Y1oY2� Pr½U1 � U2o0�

þ Pr½X14X2;Y1 ¼ Y2� Pr½V1 � V240�

þ Pr½X1oX2;Y1 ¼ Y2� Pr½V1 � V2o0�

þ Pr½ðX1 � X2ÞðY1 � Y2Þ40�:
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Since U1 � U2 and V1 � V2 are continuous r.v.’s with densities symmetric about
zero, we get

Pr½ðX �
1 � X �

2 ÞðY �
1 � Y �

2 Þ40� ¼ 1

2
PrðtieÞ þ Pr½ðX1 � X2ÞðY1 � Y2Þ40�;

that is,

Pr
�
ðconcordanceÞ ¼ PrðconcordanceÞ þ 1

2
PrðtieÞ:

Considering (3)–(4), the latter relation yields

tðX ;YÞ ¼ tðX �;Y �Þ: ð9Þ

Yanagimoto and Okamoto [15] have shown that several dependence measures,
including Kendall’s t; are preserved under the concordance order if the marginal
distributions of the random couples are continuous. Tchen [12, Corollary 3.2]
extended this result to discrete marginals with finite numbers of atoms. We show that
a similar result is easily deduced from (8).
Assume that X1 (Y1) and X2 (Y2) are continued using U (V ) and that U and V are

independent. We have

ðX1;Y1Þ!cðX2;Y2Þ )
ð8Þ
ðX �

1 ;Y �
1 Þ!cðX �

2 ;Y �
2 Þ

)
Yanagimoto

tðX �
1 ;Y �

1 ÞptðX �
2 ;Y �

2 Þ

3
ð9Þ

tðX1;Y1ÞptðX2;Y2Þ

Hence, given two random couples ðX1;Y1Þ and ðX2;Y2Þ with integer-valued
components,

ðX1;Y1Þ!cðX2;Y2Þ ) tðX1;Y1ÞptðX2;Y2Þ: ð10Þ

Note that the latter implication holds without any constraints on the size of the
supports of X and Y ; which slightly improves Tchen’s result. Moreover, the
inequality between Kendall’s t’s is strict when ðX1;Y1Þ and ðX2;Y2Þ are not
identically distributed.

4. Joint distribution of continued variables

4.1. Starred copula

Consider two discrete variables X and Y : They can be continued by (independent)
U and V respectively yielding X � and Y � with distribution F� and G�:
If Hðs; tÞ denotes the joint distribution of X and Y ; then there exists a copula C

uniquely defined on rangeðFÞ � rangeðGÞ such that representation (1) is valid. The
choices made for the distributions of U and V ; and the copula C completely
determine the joint distribution H�ðs; tÞ of X � and Y �: To check this assertion, let zd
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denote the fractional part of z (that is, zd ¼ z � ½z�). Then, we have
H�ðs; tÞ ¼PrðX �ps;Y �ptÞ

¼PrðXp½s�;Yp½t�Þ

þ LUðsdÞPrðX ¼ ½s� þ 1;Yp½t�Þ

þ LV ðtdÞPrðXp½s�;Y ¼ ½t� þ 1Þ

þ LUðsdÞLV ðtdÞPrðX ¼ ½s� þ 1;Y ¼ ½t� þ 1Þ

¼LUðsdÞfLV ðtdÞ C½Fð½s� þ 1Þ;Gð½t� þ 1Þ�

þ ½1� LV ðtdÞ� C½Fð½s� þ 1Þ;Gð½t�Þ�g

þ ð1� LUðsdÞÞfLV ðtdÞ C½Fð½s�Þ;Gð½t� þ 1Þ�

þ ½1� LV ðtdÞ� C½Fð½s�Þ;Gð½t�Þ�g ð11Þ
As H�ðs; tÞ is the joint distribution of continuous random variables, there exists a

unique copula C� on ½0; 1�2 such that

H�ðs; tÞ ¼ C�½F �ðsÞ;G�ðtÞ� 8ðs; tÞAR2

given by

C�ðu; vÞ ¼ H�½F��1ðuÞ;G��1ðvÞ�: ð12Þ
First define two inverse functions for the discrete distribution F :

F�1ðuÞ ¼ maxfxAN : FðxÞpugAN;

F
�1ðuÞ ¼ minfxAN : FðxÞXugAN:

Obviously, F�1ðuÞ and F
�1ðuÞ coincide for u in the range of F : If we set

%
uF ¼ FðF�1ðuÞÞ; %uF ¼ FðF�1ðuÞÞ

then for u outside the range of F ;

F ��1ðuÞ ¼ F�1ðuÞ þ L�1
U

u �
%
uF

%uF �
%
uF

� �
;

the same type of expression can be obtained for G��1ðvÞ: Combining these starred
inverses with Eqs. (11) and (12), we obtain the starred copula

C�ðu; vÞ ¼ u �
%
uF

%uF �
%
uF

v �
%
vG

%vG �
%
vG

Cð %uF ; %vGÞ þ %vG � v

%vG �
%
vG

Cð %uF ;
%
vGÞ

� �

þ %uF � u

%uF �
%
uF

v �
%
vG

%vG �
%
vG

Cð
%
uF ; %vGÞ þ %vG � v

%vG �
%
vG

Cð
%
uF ;

%
vGÞ

� �
; ð13Þ

where ðu; vÞ is outside RangeðFÞ �RangeðGÞ: Of course, C and C� coincide on
RangeðFÞ �RangeðGÞ: C� is a bilinear interpolation of the C copula at the

surrounding points f
%
uF ; %uFg � f

%
vG; %vGg of rangeðFÞ � rangeðGÞ: Clearly, the choice

of the distributions of U and V does not influence the starred copula.
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The bilinear interpolation (13) has been used in the statistical literature (see e.g. [4,
p. 215] and [5, p. 16, 195]). Our approach can thus be regarded as a probabilistic
interpretation of the analytic bilinear interpolation (13) of C:

4.2. Kendall’s t for continued random variables

We can obtain an explicit formula for tðX �;Y �Þ (and hence for tðX ;YÞ) using (3):

tðX �;Y �Þ ¼ 4

Z Z
½0;1�2

C�ðu; vÞ dC�ðu; vÞ � 1

¼ 4
XþN

x¼0

XþN

y¼0

Z Fx

Fx�1

Z Gy

Gy�1

C�ðu; vÞ dC�ðu; vÞ � 1;

where

Fx ¼ PrðXpxÞ; F�1 ¼ 0; Gy ¼ PrðYpyÞ; G�1 ¼ 0

Now, on ðFx�1;FxÞ � ðGy�1;GyÞ;

dC�ðu; vÞ ¼ @2C�ðu; vÞ
@u@v

du dv ¼ 1

fxgy

PrðX ¼ x;Y ¼ yÞ du dv:

Hence

tðX �;Y �Þ

¼ � 1þ 4
XþN

x¼0

XþN

y¼0

1

fxgy

PrðX ¼ x;Y ¼ yÞ
Z Fx

Fx�1

du

Z Gy

Gy�1

dv C�ðu; vÞ

¼ � 1þ
XþN

x¼0

XþN

y¼0
PrðX ¼ x;Y ¼ yÞ

� fC�ðFx;GyÞ þ C�ðFx;Gy�1Þ þ C�ðFx�1;GyÞ þ C�ðFx�1;Gy�1Þg

¼
XþN

x¼0

XþN

y¼0
PrðX ¼ x;Y ¼ yÞ

� fCðFx;GyÞ þ CðFx;Gy�1Þ þ CðFx�1;GyÞ þ CðFx�1;Gy�1Þ � 1g ð14Þ

as C and C� are equal on rangeðFÞ � rangeðGÞ: Expressed in terms of r.v.’s, (14)
yields

tðX ;YÞ ¼EHðX ;YÞ þ EHðX ;Y � 1Þ þ EHðX � 1;Y Þ

þ EHðX � 1;Y � 1Þ � 1; ð15Þ

which can be regarded as a discrete analog of the representation given, e.g., by [7] in
the continuous case.
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4.3. A simple example

Consider a joint model for discrete Bernoulli variables X and Y where failure and
success are coded using the integers 0 and 1, respectively. Denote by pX and pY the
respective probabilities of success. If X and Y are continued using U and V ; and a
copula C� is considered to model the joint distribution of the starred variables, then

H�ðs; tÞ ¼ C�½F �ðsÞ;G�ðtÞ�:

Let hij denote PrðX ¼ i;Y ¼ j Þ; i; jAf0; 1g: Using Eq. (14), we obtain

tðX �;Y �Þ ¼ 2½hð0; 0Þhð1; 1Þ � hð1; 0Þhð0; 1Þ� ð16Þ

which is simply twice the odds ratio (under the considered models for the margins
and for the copula). As expected from (9), we obtain the same expression for tðX ;YÞ
from a direct application of Eq. (4).
Given the marginal probabilities of success pX and pY ; we can rewrite Kendall’s t as

tðX �;Y �Þ ¼ 2½hð1; 1Þ � pX pY �; ð17Þ

As soon as hð1; 1Þ is fixed, the whole bivariate distribution is specified. That
probability of joint success is constrained by

maxf0; pX þ pY � 1gphð1; 1ÞpminfpX ; pYg

which corresponds to the usual Fréchet bounds.
Considering (17), tðX �;Y �Þ attains its minimum when

hð1; 1Þ ¼ maxf0; pX þ pY � 1g

in which case

tðX �;Y �Þ ¼
�2pX pY when pX þ pYo1;

�2ð1� pX Þð1� pY Þ when pX þ pYX1:

�
ð18Þ

Likewise, tðX �;Y �Þ attains its maximum when

hð1; 1Þ ¼ minfpX ; pYg

in which case

tðX �;Y �Þ ¼
2pX ð1� pY Þ when pXopY ;

2pY ð1� pX Þ when pXXpY :

�
ð19Þ

The lower and upper bounds (18)–(19) directly follow from (10) since the Fréchet
lower and upper bounds are the !c-minimum and maximum, respectively, once the
marginals have been fixed.
The largest possible value for tðX �;Y �Þ is obtained when hð1; 1Þ ¼ hð0; 0Þ ¼ 0:5

and hð1; 0Þ ¼ hð0; 1Þ ¼ 0 (zero probability of discordance) in which case tðX �;Y �Þ is
equal to 0.50. Similarly, the smallest possible value for tðX �;Y �Þ is �0:50 when
hð0; 0Þ ¼ hð1; 1Þ ¼ 0 (zero probability of concordance) and hð1; 0Þ ¼ hð0; 1Þ ¼ 0:5:
Thus, even in the most favorable cases, we see that Kendall’s t cannot reach 1

(�1). We shall come back to this point in Section 5. Let us just give here an intuitive
explanation of this fact, together with a rigorous treatment of the case F ¼ G:
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Assume that X and Y are perfectly positively dependent, that is, ðX ;YÞ is distributed
as ðF�1ðWÞ;G�1ðWÞÞ for some unit uniform r.v. W : The continuous extension of
these r.v.’s gives

ðX �;Y �Þ ¼ ðF�1ðWÞ þ U � 1;G�1ðWÞ þ V � 1Þ:

X � and Y � are less dependent by the addition of independent r.v.’s U and V even for
perfectly dependent X and Y : Specifically, if the copula C for ðX ;Y Þ is minfu; vg on
RangeðFÞ �RangeðGÞ; the copula C� for ðX �;Y �Þ given in (13) does not coincide
with the Fréchet upper bound everywhere in the unit square.
It is easy to check these assertions in the particular case F ¼ G: In this case,

ðX �;Y �Þ!cðF��1ðWÞ;F ��1ðWÞÞ ) tðX �;Y �ÞotðF ��1ðWÞ;F��1ðWÞÞ ¼ 1:

In this case, ðX �;Y �Þ and ðF��1ðWÞ;F��1ðWÞÞ cannot be identically distributed
since X � � Y � ¼ U � Va0 a.s.

5. Kendall’s s upper bound for discrete variables

5.1. A lower and upper bound for Kendall’s t

Before deriving a sharper upper bound for Kendall’s t; let us first examine Eq. (2)
to obtain a maximal upper bound for Kendall’s t: Obviously, tðX ;Y Þ will be
maximal when the probability of discordance is zero (which is not always possible).
Since

PrðconcordanceÞ þ PrðdiscordanceÞ þ PrðtieÞ ¼ 1

we conclude, after combination with Eq. (4), that

tðX ;YÞp1� PrðtieÞ

with equality when the probability of discordance is zero.
Similarly, tðX ;Y Þ will be minimal when the probability of concordance is zero

(which is not always possible) yielding

tðX ;YÞX� 1þ PrðtieÞ

with equality when the probability of concordance is zero.
Let ðX1;Y1Þ and ðX2;Y2Þ be independent copies of ðX ;Y Þ: Combining these last

results with

PrðtieÞ ¼ PrðX1 ¼ X2Þ þ PrðY1 ¼ Y2Þ � PrðX1 ¼ X2;Y1 ¼ Y2Þ

we conclude that

�1o � 1þmaxfPrðX1 ¼ X2Þ;PrðY1 ¼ Y2Þg

p � 1þ PrðtieÞptðX ;Y Þp1� PrðtieÞ

p 1�maxfPrðX1 ¼ X2Þ;PrðY1 ¼ Y2Þgo1 ð20Þ
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whatever the joint distribution of X and Y : The inequalities in (20) can also be
derived from the representation (15).
The inequalities in (20) may seem rather surprising because we know from (9)

that continuing X and Y does not modify Kendall’s t: Nevertheless, we have
to keep in mind that even if the joint distribution of ðX ;Y Þ is the Fréchet upper
bound, X � and Y � are not perfectly dependent so that their Kendall’s t is strictly less
than one.

Binomial margins: Assume that

XBBinðn; pX Þ; YBBinðn; pY Þ

with n41:
We have computed the (non-optimal) upper bound for tðX ;YÞ based on Eq. (20)

when

XBBinð5; pX Þ; YBBinð5; pY Þ

for a grid of ðpX ; pY Þ values in PX �PY where

PX ¼ f0; 0:01;y; 1:00g; PY ¼ f0; 0:05;y; 0:50g

These upper bounds are displayed in Fig. 1 where each curve joins the values of
these bounds for a given value of pY and pXAPX ; higher curves corresponding to
larger values of pY :

5.2. Sharper bounds for Kendall’s t

5.2.1. General case: arbitrary discrete margins

The knowledge of the copula C joining the discrete variables X and Y can be used
to derive sharper bounds for Kendall’s t: One could use that information to compute
the probability of a tie given by

PrðtieÞ ¼PrðX1 ¼ X2Þ þ PrðY1 ¼ Y2Þ � PrðX1 ¼ X2;Y1 ¼ Y2Þ

¼
X
xAX

f 2x þ
X
yAY

g2y

�
X
xAX

X
yAY

½CðFx;GyÞ þ CðFx�1;Gy�1Þ � CðFx;Gy�1Þ � CðFx�1;GyÞ�

and to inject it in Eq. (20).
Alternatively, one could substitute Fréchet lower or upper bound copulas in

Eq. (14) to derive bounds for Kendall’s t: We investigate the latter case.
We know that

tðX ;YÞptðF�1ðWÞ;G�1ðWÞÞ:

and

tðF�1ðWÞ;G�1ðWÞÞ ¼Pr½ðF�1ðWÞ � F�1ðW 0ÞÞðG�1ðWÞ � G�1ðW 0ÞÞ40�

� Pr½ðF�1ðWÞ � F�1ðW 0ÞÞðG�1ðWÞ � G�1ðW 0ÞÞo0�;
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where W and W 0 are independent unit uniform r.v.’s. Clearly, the second term
vanishes in the last equation and

tðF�1ðWÞ;G�1ðWÞÞ ¼ 2 Pr½F�1ðWÞoF�1ðW 0Þ;G�1ðWÞoG�1ðW 0Þ�:

Since

tðX ;XÞ ¼ 2 Pr½F�1ðWÞoF�1ðW 0Þ�;

tðY ;YÞ ¼ 2 Pr½G�1ðWÞoG�1ðW 0Þ�

we have

tðX ;YÞpminftðX ;X Þ; tðY ;YÞg:

Invoking Eq. (15) yields

tðX ;YÞpmin
XþN

x¼0
fxð4Fx�1 þ fx � 1Þ;

XþN

y¼0
gyð4Gy�1 þ gy � 1Þ

( )
ð21Þ
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Fig. 1. Kendall’s t (non-optimal) upper bound when XBBinð5; pX Þ and YBBinð5; pY Þ with

ðpX ; pY ÞAf0; 0:01;y; 1:00g � f0; 0:05;y; 0:50g; higher curves corresponding to higher values of pY :
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providing a possibly sharper upper bound for Kendall’s t: That bound is optimal
when X and Y share the same distribution.

Poisson margins: The upper bound (21) for Kendall’s t corresponding to identical
Poisson margins related by the Fréchet upper bound copula is displayed in Fig. 2 for
values of the mean parameter up to 50: As the probability of ties tends to zero when
m tends to infinity, the upper bound for Kendall’s t tends to 1 as expected.

Binomial margins: We have computed tmaxðX ;YÞ when

XBBinð5; pX Þ; YBBinð5; pY Þ

for a grid of ðpX ; pY Þ values in PX �PY where

PX ¼ f0; 0:01;y; 1:00g; PY ¼ f0; 0:05;y; 0:50g

The values of tmaxðX ;YÞ are displayed in Fig. 3 where each curve joins the values
of tmax for a given value of pY and pXAPX ; higher curves corresponding to larger
values of pY :
These upper bounds can be compared to the (non-optimal) bounds for tðX ;YÞ

displayed in Fig. 1.
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Fig. 2. Kendall’s t upper bound (21) when both random variables are Poisson with mean m:
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5.2.2. Special case: identically distributed discrete margins with finite numbers of

atoms

Consider a discrete distribution F with a finite domain

X ¼ f0; 1;y;N � 1g

Eq. (21) becomes

tðX ;YÞp
XN�1

x¼0
fxð4Fx � 3fx�1 � 1Þ:

We can bound that expression (independently of the true underlying discrete
distribution) by noting that it is maximum when the probability mass is equally
distributed within the N cells, i.e. when

fx ¼ 1

N
:
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Fig. 3. Kendall’s t upper bound (21) when XBBinð5; pX Þ and YBBinð5; pY Þ with
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Indeed, let us define the function

SN ¼
XN�1

x¼0
fx 4

Xx

y¼0
fy � 3fx � 1

 !
:

The latter can be split into

SN ¼
XN�2

x¼0
fx 4

Xx

y¼0
fy � 3fx � 1

 !
þ 3

XN�2

x¼0
fx � 3

XN�2

x¼0
fx

 !2

¼ 4
XN�2

x¼0
fx

Xx

y¼0
fy � 3

XN�2

x¼0
f 2x þ 2

XN�2

x¼0
fx � 3

XN�2

x¼0
fx

 !2

:

Now, the partial derivative of SN with respect to f0 gives

@

@f0
SN ¼ �4f0 � 2

XN�2

x¼1
fx þ 2

so that

@

@f0
SN ¼ 03f0 ¼

1�
PN�2

x¼1 fx

2
¼ f0 þ fN�1

2
3f0 ¼ fN�1:

A similar reasoning yields fi ¼ fN�1 for all i; whence the announced result follows.
We thus have

tðX ;YÞp
XN�1

x¼0

1

N
4

x

N
þ 1

N
� 1

� �
¼ 1� 1

N

with equality achieved if and only if

fx ¼ 1

N

Bernoulli margins: We recover the 0.5 upper bound that is realized when the
probabilities of success are both equal to 0.5.

Binomial margins: Assume that

XBBinðn; pÞ; YBBinðn; pÞ
with n41: Then, the above result claims that

tðX ;YÞo1� 1

n þ 1

with a strict inequality because a binomial distribution with n41 can never be
uniform.

6. Discussion

One motivation for this work was generated by [13] where the dependence between
longitudinal ordinal data was modeled using copulas. It was pointed out that
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Kendall’s tb could not solely be calculated from the copula (dependence) parameter,
but also required consideration of the marginal distributions.
More generally, when the margins are discrete, the strength of dependence cannot

be assessed solely by inspecting Kendall’s t (or modified versions of Kendall’s t like
tb): such measures should be evaluated knowing the extremal values that they can
attain. Here, we provide formulas for these values using the continuous extension
argument.
That argument provides an elegant tool that can be used further to translate, in a

multivariate discrete setting, copula-based results that are valid only for multivariate
continuous responses.
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